
TEA, a Tiny Encryption Algorithm

David J. Wheeler
Roger M. Needham

Computer Laboratory
Cambridge University

England

Abstract. We give a short routine which is based on a Feistel iteration

and uses a large number of rounds to get security with simplicity.

Introduction

We design a short program which will run on most machines and encypher
safely. It uses a large number of iterations rather than a complicated program.
It is hoped that it can easily be translated into most languages in a compatible
way. The �rst program is given below. It uses little set up time and does a weak
non linear iteration enough rounds to make it secure. There are no preset tables
or long set up times. It assumes 32 bit words.

Encode Routine

Routine, written in the C language, for encoding with key k[0] - k[3]. Data in
v[0] and v[1].

void code(long* v, long* k) {

unsigned long y=v[0],z=v[1], sum=0, /* set up */

delta=0x9e3779b9, /* a key schedule constant */

n=32 ;

while (n-->0) { /* basic cycle start */

sum += delta ;

y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;

z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;

} /* end cycle */

v[0]=y ; v[1]=z ; }

Basics of the routine

It is a Feistel type routine although addition and subtraction are used as the
reversible operators rather than XOR. The routine relies on the alternate use of
XOR and ADD to provide nonlinearity. A dual shift causes all bits of the key
and data to be mixed repeatedly.

The number of rounds before a single bit change of the data or key has spread
very close to 32 is at most six, so that sixteen cycles may su�ce and we suggest
32.

The key is set at 128 bits as this is enough to prevent simple search techniques
being e�ective.

The top 5 and bottom four bits are probably slightly weaker than the middle
bits. These bits are generated from only two versions of z (or y) instead of three,
plus the other y or z. Thus the convergence rate to even di�usion is slower.
However the shifting evens this out with perhaps a delay of one or two extra
cycles.

The key scheduling uses addition, and is applied to the unshifted z rather
than the other uses of the key. In some tests k[0] etc. were changed by addition,
but this version is simpler and seems as e�ective. The number delta, derived
from the golden number is used where

delta = (
p
5� 1)231

A di�erent multiple of delta is used in each round so that no bit of the multiple
will not change frequently. We suspect the algorithm is not very sensitive to
the value of delta and we merely need to avoid a bad value. It will be noted
that delta turns out to be odd with truncation or nearest rounding, so no extra
precautions are needed to ensure that all the digits of sum change.

The use of multiplication is an e�ective mixer, but needs shifts anyway. It
was about twice as slow per cycle on our implementation and more complicated.

The use of a table look up in the cycle was investigated. There is the possi-
bility of a delay ere one entry of the table is used. For example if k[z&3] is used
instead of k[0], there is a chance one element may not be used of (3=4)32, and a
much higher chance that the use is delayed appreciably. The table also needed
preparation from the key. Large tables were thought to be undesirable due to
the set up time and complication.

The algorithm will easily translate into assembly code as long as the exclusive
or is an operation. The hardware implementation is not di�cult, and is of the
same order of complexity as DES [1], taking into account the double length key.

Usage

This type of algorithm can replace DES in software, and is short enough to
write into almost any program on any computer. Although speed is not a strong
objective with 32 cycles (64 rounds), on one implementation it is three times
as fast as a good software implementation of DES which has 16 rounds.

The modes of use of DES are all applicable. The cycle count can readily be
varied, or even made part of the key. It is expected that security can be enhanced
by increasing the number of iterations.

Selection of Algorithm

A considerable number of small algorithms were tried and the selected one is
neither the fastest, nor the shortest but is thought to be the best compromise
for safety, ease of implementation, lack of specialised tables, and reasonable

performance. On languages which lack shifts and XOR it will be di�cult to code.
Standard C does makes an arithmetic right shift and overows implementation
dependent so that the right shift is logical and y and z are unsigned.

Analysis

A few tests were run to detect when a single change had propagated to 32 changes
within a small margin. Also some loop tests were run including a di�erential
loop test to determine loop closures. These tests failed to show any unexpected
behaviour.

The shifts and XOR cause changes to be propagated left and right, and a
single change will have propagated the full word in about 4 iterations. Measure-
ments showed the di�usion was complete at about six iterations.

There was also a cycle test using up to 34 of the bits to �nd the lengths of
the cycles. A more powerful version found the cycle length of the di�erential
function.

d(x)=f(x XOR 2p) XOR f(x)

which may test the resistance to some forms of di�erential crypto-analysis
[2].

Conclusions

We present a simple algorithm which can be translated into a number of dif-
ferent languages and assembly languages very easily. It is short enough to be
programmed from memory or a copy. It is hoped it is safe because of the num-
ber of cycles in the encoding and length of key. It uses a sequence of word
operations rather than wasting the power of a computer by doing byte or 4 bit
operations.

Acknowledgements

Thanks are due to Mike Roe and other colleagues who helped in discussion and
tests and to the helpful improvements suggested by the editor.

References

1 National Institute of Standards, Data Encryption Standard, Federal Informa-
tion Processing Standards Publication 46. January 1977
2 E. Biham and A. Shamir, Di�erential Analysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993
3 B. Schneier, Applied Cryptology, John Wiley & sons, New York 1994.

Appendix

Decode Routine

void decode(long* v,long* k) {

unsigned long n=32, sum, y=v[0], z=v[1],

delta=0x9e3779b9 ;

sum=delta<<5 ;

/* start cycle */

while (n-->0) {

z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;

y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;

sum-=delta ; }

/* end cycle */

v[0]=y ; v[1]=z ; }

Implementation Notes

It can be shortened, or made faster, but we hope this version is the simplest to
implement or remember.

A simple improvement is to copy k[0-3] into a,b,c,d before the iteration so
that the indexing is taken out of the loop. In one implementation it reduced the
time by about 1/6th.

It can be implemented as a couple of macros, which would remove the calling
overheads.

This article was processed using the LATEX macro package with LLNCS style

