Source: utm.js

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
/* UTM / WGS-84 Conversion Functions                                  (c) Chris Veness 2014-2019  */
/*                                                                                   MIT Licence  */
/* www.movable-type.co.uk/scripts/latlong-utm-mgrs.html                                           */
/* www.movable-type.co.uk/scripts/geodesy-library.html#utm                                        */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

/* eslint-disable indent */

import LatLonEllipsoidal, { Dms } from './latlon-ellipsoidal-datum.js';


/**
 * The Universal Transverse Mercator (UTM) system is a 2-dimensional Cartesian coordinate system
 * providing locations on the surface of the Earth.
 *
 * UTM is a set of 60 transverse Mercator projections, normally based on the WGS-84 ellipsoid.
 * Within each zone, coordinates are represented as eastings and northings, measures in metres; e.g.
 * ‘31 N 448251 5411932’.
 *
 * This method based on Karney 2011 ‘Transverse Mercator with an accuracy of a few nanometers’,
 * building on Krüger 1912 ‘Konforme Abbildung des Erdellipsoids in der Ebene’.
 *
 * @module utm
 */


/* Utm  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */


/**
 * UTM coordinates, with functions to parse them and convert them to LatLon points.
 */
class Utm {

    /**
     * Creates a Utm coordinate object comprising zone, hemisphere, easting, northing on a given
     * datum (normally WGS84).
     *
     * @param  {number}        zone - UTM 6° longitudinal zone (1..60 covering 180°W..180°E).
     * @param  {string}        hemisphere - N for northern hemisphere, S for southern hemisphere.
     * @param  {number}        easting - Easting in metres from false easting (-500km from central meridian).
     * @param  {number}        northing - Northing in metres from equator (N) or from false northing -10,000km (S).
     * @param  {LatLon.datums} [datum=WGS84] - Datum UTM coordinate is based on.
     * @param  {number}        [convergence=null] - Meridian convergence (bearing of grid north
     *                         clockwise from true north), in degrees.
     * @param  {number}        [scale=null] - Grid scale factor.
     * @params {boolean=true}  verifyEN - Check easting/northing is within 'normal' values (may be
     *                         suppressed for extended coherent coordinates or alternative datums
     *                         e.g. ED50 (epsg.io/23029).
     * @throws {TypeError} Invalid UTM coordinate.
     *
     * @example
     *   import Utm from '/js/geodesy/utm.js';
     *   const utmCoord = new Utm(31, 'N', 448251, 5411932);
     */
    constructor(zone, hemisphere, easting, northing, datum=LatLonEllipsoidal.datums.WGS84, convergence=null, scale=null, verifyEN=true) {
        if (!(1<=zone && zone<=60)) throw new RangeError(`invalid UTM zone ‘${zone}’`);
        if (zone != parseInt(zone)) throw new RangeError(`invalid UTM zone ‘${zone}’`);
        if (typeof hemisphere != 'string' || !hemisphere.match(/[NS]/i)) throw new RangeError(`invalid UTM hemisphere ‘${hemisphere}’`);
        if (verifyEN) { // range-check E/N values
            if (!(0<=easting && easting<=1000e3)) throw new RangeError(`invalid UTM easting ‘${easting}’`);
            if (hemisphere.toUpperCase()=='N' && !(0<=northing && northing<9328094)) throw new RangeError(`invalid UTM northing ‘${northing}’`);
            if (hemisphere.toUpperCase()=='S' && !(1118414<northing && northing<=10000e3)) throw new RangeError(`invalid UTM northing ‘${northing}’`);
        }
        if (!datum || datum.ellipsoid==undefined) throw new TypeError(`unrecognised datum ‘${datum}’`);

        this.zone = Number(zone);
        this.hemisphere = hemisphere.toUpperCase();
        this.easting = Number(easting);
        this.northing = Number(northing);
        this.datum = datum;
        this.convergence = convergence===null ? null : Number(convergence);
        this.scale = scale===null ? null : Number(scale);
    }


    /**
     * Converts UTM zone/easting/northing coordinate to latitude/longitude.
     *
     * Implements Karney’s method, using Krüger series to order n⁶, giving results accurate to 5nm
     * for distances up to 3900km from the central meridian.
     *
     * @param   {Utm} utmCoord - UTM coordinate to be converted to latitude/longitude.
     * @returns {LatLon} Latitude/longitude of supplied grid reference.
     *
     * @example
     *   const grid = new Utm(31, 'N', 448251.795, 5411932.678);
     *   const latlong = grid.toLatLon(); // 48°51′29.52″N, 002°17′40.20″E
     */
    toLatLon() {
        const { zone: z, hemisphere: h } = this;

        const falseEasting = 500e3, falseNorthing = 10000e3;

        const { a, f } = this.datum.ellipsoid; // WGS-84: a = 6378137, f = 1/298.257223563;

        const k0 = 0.9996; // UTM scale on the central meridian

        const x = this.easting - falseEasting;                            // make x ± relative to central meridian
        const y = h=='S' ? this.northing - falseNorthing : this.northing; // make y ± relative to equator

        // ---- from Karney 2011 Eq 15-22, 36:

        const e = Math.sqrt(f*(2-f)); // eccentricity
        const n = f / (2 - f);        // 3rd flattening
        const n2 = n*n, n3 = n*n2, n4 = n*n3, n5 = n*n4, n6 = n*n5;

        const A = a/(1+n) * (1 + 1/4*n2 + 1/64*n4 + 1/256*n6); // 2πA is the circumference of a meridian

        const η = x / (k0*A);
        const ξ = y / (k0*A);

        const β = [ null, // note β is one-based array (6th order Krüger expressions)
            1/2*n - 2/3*n2 + 37/96*n3 -    1/360*n4 -   81/512*n5 +    96199/604800*n6,
                   1/48*n2 +  1/15*n3 - 437/1440*n4 +   46/105*n5 - 1118711/3870720*n6,
                            17/480*n3 -   37/840*n4 - 209/4480*n5 +      5569/90720*n6,
                                     4397/161280*n4 -   11/504*n5 -  830251/7257600*n6,
                                                   4583/161280*n5 -  108847/3991680*n6,
                                                                 20648693/638668800*n6 ];

        let ξʹ = ξ;
        for (let j=1; j<=6; j++) ξʹ -= β[j] * Math.sin(2*j*ξ) * Math.cosh(2*j*η);

        let ηʹ = η;
        for (let j=1; j<=6; j++) ηʹ -= β[j] * Math.cos(2*j*ξ) * Math.sinh(2*j*η);

        const sinhηʹ = Math.sinh(ηʹ);
        const sinξʹ = Math.sin(ξʹ), cosξʹ = Math.cos(ξʹ);

        const τʹ = sinξʹ / Math.sqrt(sinhηʹ*sinhηʹ + cosξʹ*cosξʹ);

        let δτi = null;
        let τi = τʹ;
        do {
            const σi = Math.sinh(e*Math.atanh(e*τi/Math.sqrt(1+τi*τi)));
            const τiʹ = τi * Math.sqrt(1+σi*σi) - σi * Math.sqrt(1+τi*τi);
            δτi = (τʹ - τiʹ)/Math.sqrt(1+τiʹ*τiʹ)
                * (1 + (1-e*e)*τi*τi) / ((1-e*e)*Math.sqrt(1+τi*τi));
            τi += δτi;
        } while (Math.abs(δτi) > 1e-12); // using IEEE 754 δτi -> 0 after 2-3 iterations
        // note relatively large convergence test as δτi toggles on ±1.12e-16 for eg 31 N 400000 5000000
        const τ = τi;

        const φ = Math.atan(τ);

        let λ = Math.atan2(sinhηʹ, cosξʹ);

        // ---- convergence: Karney 2011 Eq 26, 27

        let p = 1;
        for (let j=1; j<=6; j++) p -= 2*j*β[j] * Math.cos(2*j*ξ) * Math.cosh(2*j*η);
        let q = 0;
        for (let j=1; j<=6; j++) q += 2*j*β[j] * Math.sin(2*j*ξ) * Math.sinh(2*j*η);

        const γʹ = Math.atan(Math.tan(ξʹ) * Math.tanh(ηʹ));
        const γʺ = Math.atan2(q, p);

        const γ = γʹ + γʺ;

        // ---- scale: Karney 2011 Eq 28

        const sinφ = Math.sin(φ);
        const kʹ = Math.sqrt(1 - e*e*sinφ*sinφ) * Math.sqrt(1 + τ*τ) * Math.sqrt(sinhηʹ*sinhηʹ + cosξʹ*cosξʹ);
        const kʺ = A / a / Math.sqrt(p*p + q*q);

        const k = k0 * kʹ * kʺ;

        // ------------

        const λ0 = ((z-1)*6 - 180 + 3).toRadians(); // longitude of central meridian
        λ += λ0; // move λ from zonal to global coordinates

        // round to reasonable precision
        const lat = Number(φ.toDegrees().toFixed(14)); // nm precision (1nm = 10^-14°)
        const lon = Number(λ.toDegrees().toFixed(14)); // (strictly lat rounding should be φ⋅cosφ!)
        const convergence = Number(γ.toDegrees().toFixed(9));
        const scale = Number(k.toFixed(12));

        const latLong = new LatLon_Utm(lat, lon, 0, this.datum);
        // ... and add the convergence and scale into the LatLon object ... wonderful JavaScript!
        latLong.convergence = convergence;
        latLong.scale = scale;

        return latLong;
    }


    /**
     * Parses string representation of UTM coordinate.
     *
     * A UTM coordinate comprises (space-separated)
     *  - zone
     *  - hemisphere
     *  - easting
     *  - northing.
     *
     * @param   {string} utmCoord - UTM coordinate (WGS 84).
     * @param   {Datum}  [datum=WGS84] - Datum coordinate is defined in (default WGS 84).
     * @returns {Utm} Parsed UTM coordinate.
     * @throws  {TypeError} Invalid UTM coordinate.
     *
     * @example
     *   const utmCoord = Utm.parse('31 N 448251 5411932');
     *   // utmCoord: {zone: 31, hemisphere: 'N', easting: 448251, northing: 5411932 }
     */
    static parse(utmCoord, datum=LatLonEllipsoidal.datums.WGS84) {
        // match separate elements (separated by whitespace)
        utmCoord = utmCoord.trim().match(/\S+/g);

        if (utmCoord==null || utmCoord.length!=4) throw new Error(`invalid UTM coordinate ‘${utmCoord}’`);

        const zone = utmCoord[0], hemisphere = utmCoord[1], easting = utmCoord[2], northing = utmCoord[3];

        return new this(zone, hemisphere, easting, northing, datum); // 'new this' as may return subclassed types
    }


    /**
     * Returns a string representation of a UTM coordinate.
     *
     * To distinguish from MGRS grid zone designators, a space is left between the zone and the
     * hemisphere.
     *
     * Note that UTM coordinates get rounded, not truncated (unlike MGRS grid references).
     *
     * @param   {number} [digits=0] - Number of digits to appear after the decimal point (3 ≡ mm).
     * @returns {string} A string representation of the coordinate.
     *
     * @example
     *   const utm = new Utm('31', 'N', 448251, 5411932).toString(4);  // 31 N 448251.0000 5411932.0000
     */
    toString(digits=0) {

        const z = this.zone.toString().padStart(2, '0');
        const h = this.hemisphere;
        const e = this.easting.toFixed(digits);
        const n = this.northing.toFixed(digits);

        return `${z} ${h} ${e} ${n}`;
    }

}


/* LatLon_Utm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */


/**
 * Extends LatLon with method to convert LatLon points to UTM coordinates.
 *
 * @extends LatLon
 */
class LatLon_Utm extends LatLonEllipsoidal {

    /**
     * Converts latitude/longitude to UTM coordinate.
     *
     * Implements Karney’s method, using Krüger series to order n⁶, giving results accurate to 5nm
     * for distances up to 3900km from the central meridian.
     *
     * @param   {number} [zoneOverride] - Use specified zone rather than zone within which point lies;
     *          note overriding the UTM zone has the potential to result in negative eastings, and
     *          perverse results within Norway/Svalbard exceptions.
     * @returns {Utm} UTM coordinate.
     * @throws  {TypeError} Latitude outside UTM limits.
     *
     * @example
     *   const latlong = new LatLon(48.8582, 2.2945);
     *   const utmCoord = latlong.toUtm(); // 31 N 448252 5411933
     */
    toUtm(zoneOverride=undefined) {
        if (!(-80<=this.lat && this.lat<=84)) throw new RangeError(`latitude ‘${this.lat}’ outside UTM limits`);

        const falseEasting = 500e3, falseNorthing = 10000e3;

        let zone = zoneOverride || Math.floor((this.lon+180)/6) + 1; // longitudinal zone
        let λ0 = ((zone-1)*6 - 180 + 3).toRadians(); // longitude of central meridian

        // ---- handle Norway/Svalbard exceptions
        // grid zones are 8° tall; 0°N is offset 10 into latitude bands array
        const mgrsLatBands = 'CDEFGHJKLMNPQRSTUVWXX'; // X is repeated for 80-84°N
        const latBand = mgrsLatBands.charAt(Math.floor(this.lat/8+10));
        // adjust zone & central meridian for Norway
        if (zone==31 && latBand=='V' && this.lon>= 3) { zone++; λ0 += (6).toRadians(); }
        // adjust zone & central meridian for Svalbard
        if (zone==32 && latBand=='X' && this.lon<  9) { zone--; λ0 -= (6).toRadians(); }
        if (zone==32 && latBand=='X' && this.lon>= 9) { zone++; λ0 += (6).toRadians(); }
        if (zone==34 && latBand=='X' && this.lon< 21) { zone--; λ0 -= (6).toRadians(); }
        if (zone==34 && latBand=='X' && this.lon>=21) { zone++; λ0 += (6).toRadians(); }
        if (zone==36 && latBand=='X' && this.lon< 33) { zone--; λ0 -= (6).toRadians(); }
        if (zone==36 && latBand=='X' && this.lon>=33) { zone++; λ0 += (6).toRadians(); }

        const φ = this.lat.toRadians();      // latitude ± from equator
        const λ = this.lon.toRadians() - λ0; // longitude ± from central meridian

        // allow alternative ellipsoid to be specified
        const ellipsoid = this.datum ? this.datum.ellipsoid : LatLonEllipsoidal.ellipsoids.WGS84;
        const { a, f } = ellipsoid; // WGS-84: a = 6378137, f = 1/298.257223563;

        const k0 = 0.9996; // UTM scale on the central meridian

        // ---- easting, northing: Karney 2011 Eq 7-14, 29, 35:

        const e = Math.sqrt(f*(2-f)); // eccentricity
        const n = f / (2 - f);        // 3rd flattening
        const n2 = n*n, n3 = n*n2, n4 = n*n3, n5 = n*n4, n6 = n*n5;

        const cosλ = Math.cos(λ), sinλ = Math.sin(λ), tanλ = Math.tan(λ);

        const τ = Math.tan(φ); // τ ≡ tanφ, τʹ ≡ tanφʹ; prime (ʹ) indicates angles on the conformal sphere
        const σ = Math.sinh(e*Math.atanh(e*τ/Math.sqrt(1+τ*τ)));

        const τʹ = τ*Math.sqrt(1+σ*σ) - σ*Math.sqrt(1+τ*τ);

        const ξʹ = Math.atan2(τʹ, cosλ);
        const ηʹ = Math.asinh(sinλ / Math.sqrt(τʹ*τʹ + cosλ*cosλ));

        const A = a/(1+n) * (1 + 1/4*n2 + 1/64*n4 + 1/256*n6); // 2πA is the circumference of a meridian

        const α = [ null, // note α is one-based array (6th order Krüger expressions)
            1/2*n - 2/3*n2 + 5/16*n3 +   41/180*n4 -     127/288*n5 +      7891/37800*n6,
                  13/48*n2 -  3/5*n3 + 557/1440*n4 +     281/630*n5 - 1983433/1935360*n6,
                           61/240*n3 -  103/140*n4 + 15061/26880*n5 +   167603/181440*n6,
                                   49561/161280*n4 -     179/168*n5 + 6601661/7257600*n6,
                                                     34729/80640*n5 - 3418889/1995840*n6,
                                                                  212378941/319334400*n6 ];

        let ξ = ξʹ;
        for (let j=1; j<=6; j++) ξ += α[j] * Math.sin(2*j*ξʹ) * Math.cosh(2*j*ηʹ);

        let η = ηʹ;
        for (let j=1; j<=6; j++) η += α[j] * Math.cos(2*j*ξʹ) * Math.sinh(2*j*ηʹ);

        let x = k0 * A * η;
        let y = k0 * A * ξ;

        // ---- convergence: Karney 2011 Eq 23, 24

        let pʹ = 1;
        for (let j=1; j<=6; j++) pʹ += 2*j*α[j] * Math.cos(2*j*ξʹ) * Math.cosh(2*j*ηʹ);
        let qʹ = 0;
        for (let j=1; j<=6; j++) qʹ += 2*j*α[j] * Math.sin(2*j*ξʹ) * Math.sinh(2*j*ηʹ);

        const γʹ = Math.atan(τʹ / Math.sqrt(1+τʹ*τʹ)*tanλ);
        const γʺ = Math.atan2(qʹ, pʹ);

        const γ = γʹ + γʺ;

        // ---- scale: Karney 2011 Eq 25

        const sinφ = Math.sin(φ);
        const kʹ = Math.sqrt(1 - e*e*sinφ*sinφ) * Math.sqrt(1 + τ*τ) / Math.sqrt(τʹ*τʹ + cosλ*cosλ);
        const kʺ = A / a * Math.sqrt(pʹ*pʹ + qʹ*qʹ);

        const k = k0 * kʹ * kʺ;

        // ------------

        // shift x/y to false origins
        x = x + falseEasting;             // make x relative to false easting
        if (y < 0) y = y + falseNorthing; // make y in southern hemisphere relative to false northing

        // round to reasonable precision
        x = Number(x.toFixed(9)); // nm precision
        y = Number(y.toFixed(9)); // nm precision
        const convergence = Number(γ.toDegrees().toFixed(9));
        const scale = Number(k.toFixed(12));

        const h = this.lat>=0 ? 'N' : 'S'; // hemisphere

        return new Utm(zone, h, x, y, this.datum, convergence, scale, !!zoneOverride);
    }
}


/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */

export { Utm as default, LatLon_Utm as LatLon, Dms };