128 bits (16 characters) from the Password will be used to encrypt the Plaintext, using Wheeler & Needham’s Tiny Encryption Algorithm (‘xtea’).
The more recent Block TEA is simpler and more effective, especially for arbitrary-length strings.
See below for the source code of the JavaScript implementation. You are
welcome to re-use these scripts [without any warranty express or implied]
provided you retain my copyright notice and when possible a link to my website.
If you have any queries or find any problems, please contact me.
© 2000-2005 Chris Veness
// use (16 chars of) 'password' to encrypt 'plaintext' function encrypt(plaintext, password) { var v = new Array(2), k = new Array(4), s = "", i; plaintext = escape(plaintext); // use escape() so only have single-byte chars to encode // build key directly from 1st 16 chars of password for (var i=0; i<4; i++) k[i] = Str4ToLong(password.slice(i*4,(i+1)*4)); for (i=0; i<plaintext.length; i+=8) { // encode plaintext into s in 64-bit (8 char) blocks v[0] = Str4ToLong(plaintext.slice(i,i+4)); // ... note this is 'electronic codebook' mode v[1] = Str4ToLong(plaintext.slice(i+4,i+8)); code(v, k); s += LongToStr4(v[0]) + LongToStr4(v[1]); } return escCtrlCh(s); // note: if plaintext or password are passed as string objects, rather than strings, this // function will throw an 'Object doesn't support this property or method' error } // use (16 chars of) 'password' to decrypt 'ciphertext' with xTEA function decrypt(ciphertext, password) { var v = new Array(2), k = new Array(4), s = "", i; for (var i=0; i<4; i++) k[i] = Str4ToLong(password.slice(i*4,(i+1)*4)); ciphertext = unescCtrlCh(ciphertext); for (i=0; i<ciphertext.length; i+=8) { // decode ciphertext into s in 64-bit (8 char) blocks v[0] = Str4ToLong(ciphertext.slice(i,i+4)); v[1] = Str4ToLong(ciphertext.slice(i+4,i+8)); decode(v, k); s += LongToStr4(v[0]) + LongToStr4(v[1]); } // strip trailing null chars resulting from filling 4-char blocks: s = s.replace(/\0+$/, ''); return unescape(s); } function code(v, k) { // Extended TEA: this is the 1997 revised version of Needham & Wheeler's algorithm // params: v[2] 64-bit value block; k[4] 128-bit key var y = v[0], z = v[1]; var delta = 0x9E3779B9, limit = delta*32, sum = 0; while (sum != limit) { y += (z<<4 ^ z>>>5)+z ^ sum+k[sum & 3]; sum += delta; z += (y<<4 ^ y>>>5)+y ^ sum+k[sum>>>11 & 3]; // note: unsigned right-shift '>>>' is used in place of original '>>', due to lack // of 'unsigned' type declaration in JavaScript (thanks to Karsten Kraus for this) } v[0] = y; v[1] = z; } function decode(v, k) { var y = v[0], z = v[1]; var delta = 0x9E3779B9, sum = delta*32; while (sum != 0) { z -= (y<<4 ^ y>>>5)+y ^ sum+k[sum>>>11 & 3]; sum -= delta; y -= (z<<4 ^ z>>>5)+z ^ sum+k[sum & 3]; } v[0] = y; v[1] = z; } // supporting functions function Str4ToLong(s) { // convert 4 chars of s to a numeric long var v = 0; for (var i=0; i<4; i++) v |= s.charCodeAt(i) << i*8; return isNaN(v) ? 0 : v; } function LongToStr4(v) { // convert a numeric long to 4 char string var s = String.fromCharCode(v & 0xFF, v>>8 & 0xFF, v>>16 & 0xFF, v>>24 & 0xFF); return s; } function escCtrlCh(str) { // escape control chars which might cause problems with encrypted texts return str.replace(/[\0\t\n\v\f\r\xa0'"!]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; }); } function unescCtrlCh(str) { // unescape potentially problematic nulls and control characters return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); }); }